Leveraging Queueing Theory and OS Profiling to Reduce Application Latency

Anshul Gandhi

Assistant Professor Computer Science Dept.

Amoghavarsha Suresh *Ph.D. Student Computer Science Dept.*

Stony Brook University

High-Level Motivation for this Tutorial

- Online (or web) applications are everywhere
- Such apps are interactive, responsive (sub-second latency)
- Latency is a critical metric

Applications are Complex

- Today's online services consist of several components
- To optimize end-to-end latency, where should one start looking?

Goal: Achieving Low Latency

- Common approach: *underutilize* servers
- Other approaches: shorten the *critical path*
 - Chronos (SOCC'12): User-level networking, bypass kernel
 - UCR (ICPP'11): RDMA-capable Memcached
 - Tales of the Tail (SOCC'14): Real-time scheduling
 - ➢ Warehouse-scale computers (ISCA'15): Hardware specialization
- All these approaches ignore a key issue: variability

Significance of Variability

- Request processing times are highly variable
- Harder to obtain low tail latencies

But, variability represents an opportunity

Our focus in this tutorial is on *directly* targeting a reduction in variability to improve latency

Significance of Variability

Variability represents an opportunity for reducing latency

Goal of this Tutorial

SERVER

Reduce end-to-end server latency by targeting per-stage variability

High-Level Outline of Tutorial

How variability impacts latency?
 Why our approach works
 How to mitigate variability?
 How to apply our approach
 dependency graph
 dependency graph
 Gependency graph
 Gependency

Outline of Tutorial

Part 1: Queueing theory and practice

- Basics of queueing theory: arrivals, departures, queues
- Queueing models: M/M/1, M/M/k, M/G/1
- Useful lessons: latency vs. load, impact of variability, load
- Shortcomings: limiting assumptions, practical applicability
- Using queueing theory to detect application bottlenecks

Part 2: Mitigating variability to reduce latency

- Application profiling: service time variability, stages of pro
- Control knobs: OS and application specific knobs to reduce
- Case studies: Memcached, Apache web server; alternative
- Future work: multi-server, VMs, microservices

Queueing Theory Origins

- Early 1900s, by Erlang
- To analyze telephone exchanges
- Today, queues are everywhere!

PDF Conversion/Complian

Please be patient, this process may take a few minutes. Mæ Every 7 seconds this page will refresh to check the status o You can check the latest status by clicking on the followin You can cancel this process by clicking the following link:

JOB STATUS QUEUED JOB STATUS QUEUED

Popular Applications of Queueing Theory

deliver

stores package

How Queueing Theory fits into this Tutorial

- Use queueing theory to analyze the impact of variability on latency
- Model each component as a queueing system
 - Example, packet processing at the NIC
 - > Example, an entire server in a multi-tier deployment

Queueing Theory Basics

- Single-server, First-Come-First-Serve (FCFS)
- External arrivals, open-loop system

Request latency (\mathbf{T}) = queueing time (\mathbf{Q}) + service time (\mathbf{S})

How Queueing Theory Works

- Model latency (T) as a function of two processes or random variables:
 - > Inter-arrival time, **IAT**, time between requests

 $> 1/E[IAT] = \lambda$ requests/sec (average arrival rate)

- ➢ Service time, ST, size of a request
 ➢ 1/E[ST] = µ requests/sec (average service rate)
- Can also model number of requests in system (N) or queue (N_Q)

Arrivals and Services

- > $1/E[IAT] = \lambda$ requests/sec (average arrival rate)
- ➤ 1/E[ST] = µ requests/sec (average service rate)

- > Assume $\lambda < \mu$ always
- > Why? What if $\lambda > \mu$??

- 4 GHz server
- Single-threaded CPU-intensive job requiring 1 Gigacycles to complete
- E[ST] = ?? seconds
- µ = ? req/s

$$\lambda \Longrightarrow \square \square \mu \rightarrow$$

System Load

- > $1/E[IAT] = \lambda$ requests/sec (average arrival rate)
- > $1/E[ST] = \mu$ requests/sec (average service rate)

Load (ρ) = E[ST]/E[IAT] = λ/μ

Average incoming work/sec

➢ Note, ρ < 1</p>

In Practice: Arrivals and Services

- \succ λ and μ are key parameters of queueing models
- > But how to obtain these in practice? Not always readily available.
- 1. λ is average arrival rate: measurable at load balancer or load generator

HAProxy version 1.7.5, release

Apache Server Status for

In Practice: Arrivals and Services

- \succ λ and μ are key parameters of queueing models
- > But how to obtain these in practice? Not always readily available.
- 2. μ is average service rate

μ is same as throughput??

In Practice: What About Throughput?

- Throughput is average rate at which requests are serviced
 - Avg. arrival rate λ req/s
 - Avg. service rate µ req/s
 - Assume no losses
 - Peak throughput = ??
 - Throughput = ??

- Avg. arrival rate λ req/s
- Avg. service rate 2µ req/s
- Assume no losses
- Peak throughput = ??
- Throughput = ??

In Practice: Arrivals and Services

- \succ λ and μ are key parameters of queueing models
- > But how to obtain these in practice? Not always readily available.
- 2. μ is average service rate

- ST: time to service request (no queueing)
- Measure E[ST] and set µ = 1/E[ST]

Outline of Tutorial

Part 1: Queueing theory and practice

- Basics of queueing theory: arrivals, departures, queues
- Queueing models: M/M/1, M/M/k, M/G/1
- Useful lessons: latency vs. load, impact of variability, load balancing
- Shortcomings: limiting assumptions, practical applicability
- Using queueing theory to detect application bottlenecks

Queueing Models

- Model latency (**T**) as a function of two processes or random variables: •
 - > Inter-arrival time, **IAT**, time between requests
 - \succ Service time, **ST**, size of a request
- Queueing model:

Significance of the IAT and ST Distribution

- Common distributions:
 - D: Deterministic (zero var)

Significance of the IAT and ST Distribution

- Common distributions:
 - D: Deterministic (zero var)
 - ➤ M: Exponential (medium var)

M/D/1 model

IAT and ST Distributions

- Common distributions:
 - D: Deterministic (zero var)
 - M: Exponential (medium var)

$$f(x) \Box \frac{1}{e^x}$$

IAT and ST Distributions

- Common distributions:
 - D: Deterministic (zero var)
 - ➤ M: Exponential (medium var)
 - ➤ H2: Hyper-exponential (tunable)

$$H_{2} = \begin{cases} Exp(\lambda_{1}) \text{ w.p. p} \\ Exp(\lambda_{2}) \text{ w.p. (1-p)} \end{cases}$$

IAT and ST Distributions

- Common distributions:
 - D: Deterministic (zero var)
 - M: Exponential (medium var)
 - H2: Hyper-exponential (tunable)
 - > Pareto (high var) $f(x) \Box \frac{1}{x^{\alpha+1}}$

Heavy tail distribution has a tail that is heavier than that of an exponential

- Model latency (**T**) as a function of two processes or random variables: •
 - > Inter-arrival time, **IAT**, time between requests
 - \succ Service time, **ST**, size of a request
- Queueing model:

- Common distributions:
- D: Deterministic (zero var)
- M: Exponential (medium var)
- \succ H₂: Hyper-exponential (high var)
- Pareto (high var)
- G: General distribution

A. Suresh and A. Gandhi, Using Variability as a Guiding Principle to Reduce Latency in Web Applications via OS Profiling, WWW 2019

- Latency rises non-linearly with load
- M/M/1: E[T] = $1/(\mu \lambda) = E[ST]/(1 \rho)$

$$T_x = E[ST]^*ln(1-.01x)/(1 - \rho)$$

- For a given load, latency increases with IAT and ST variability
- For a given load: $T_{M/H_2/1} > T_{M/M/1} > T_{M/D/1} > T_{D/D/1}$

Takeaway 2

Latency increases with load and IAT and ST variability

In Practice: Queueing Models

- In practice, latency ~ $1/(1 \rho)$, and not latency ~ ρ
- However, in practice, **latency** \neq **E[ST]/(1 \rho)**
 - IAT and ST not always exponential
 - Network delays, resource contention

A. Gandhi et al., AutoScale, ACM Trans. Comp. Sys., 2012; S. Javadi et al., DIAL, ICAC 2017; S. Votke et al., Modeling and Analysis of Performance under Interference in the Cloud, Mascots 2017

In Practice: Queueing Models

A better approximation in practice:

S. Javadi et al., DIAL, ICAC 2017; A. Gandhi et al., Providing Performance Guarantees for Cloud-deployed Applications, IEEE Trans. Cloud Computing, 2018

34

In Practice: Queueing Models

Queueing models are *not* meant to be used out-of-the-box

In Practice: IAT and ST distributions

- Common distributions:
- D: Deterministic (zero var)
- ➤ M: Exponential (medium var)
- H2: Hyper-exponential (tunable)
- Pareto (high var)

Which distribution does my IAT and ST follow?

Distribution fitting to derive the best fit for your data!

<u>Takeaway 4</u>

H₂/H₂/1 model

The H2 distribution can be tuned via its parameters to provide an adequate fit for IAT and ST

M. Wajahat et al., Distribution Fitting and Performance Modeling for Storage Traces, Mascots 2019 (Best Paper)³⁶

Multi-Server Queueing Models

Today's applications employ a cluster of servers to serve the workload

k)model

k servers

Queueing model: •

> distribution of IAT distribution of ST

Multi-Server Queueing Models: Results

• M/M/k

<u>Takeaway 5</u>

- Pr(all k servers busy) ~ ρ^k
- With more servers, we can better handle load variations

In Practice: Multi-Server Queueing Models

- How to load balance among heterogeneous, processor sharing, servers?
 - Proportional to their service rates??
 - > No!

In Practice: Multi-Server Queueing Models

- How to load balance among heterogeneous, processor sharing, servers?
 - Send more-than-proportional load to faster servers
 - Send less-than-proportional load to slower servers

Outline of Tutorial

Part 1: Queueing theory and practice

- Basics of queueing theory: arrivals, departures, queues
- Queueing models: M/M/1, M/M/k, M/G/1
- Useful lessons: latency vs. load, impact of variability, load balancing
- Shortcomings: limiting assumptions, practical applicability
- Using queueing theory to detect application bottlenecks

Back to Variability

dependency graph

variable

- Inter arrival time, IAT, time between requests
- Service time, **ST**, size of a request

Service Time Variability

- D: Deterministic (zero var)
- M: Exponential (medium var)
- \succ H₂: Hyper-exponential (high var)
- Service time, ST, size of a request

- Var(ST) is important
- But what about E[ST] ?

Impact of Var(ST) and E[ST] on Latency

M/G/1 model (P-K formula)

M/G/1 model (P-K formula)

$$E[T] = \frac{Var(ST)}{2 \cdot E[IAT] \cdot (1 - \rho)} + \frac{E[ST] \cdot (2 - \rho)}{2(1 - \rho)} \underbrace{(\int_{2}^{\infty} \int_{2}^{0} \int_{2}^{0} \int_{2}^{0} \int_{2}^{0} \int_{1}^{10} \int$$

- T: Latency ٠
- ST: Service time size of a request ٠
- IAT: Inter-arrival time •
- *ρ*: load (work/sec) ٠

Latency heatmap as function of Var(ST), E[ST]

2.5

Mean service time, E[S] (ms) \rightarrow

10

1.5

2

Reducing Var(ST), even at the expense of E[ST], can significantly reduce latency

6

5

4

3

2

3.5

в

3

Outline of Tutorial

Part 2:

<u>Takeaway 7</u>

- Applica Reducing Var(ST), even at the expense of E[ST],
 Control can significantly reduce latency
- Case studies: Memcached, Apache web server; alternativ
- Future work: multi-server, VMs, microservices

BS

Solution Overview for Client-Server Web Systems

Step 1: Fine-grained probing to track request processing stages

Step 2: Compute variability at each stage to find bottlenecks

Step 3: Find appropriate control knobs to reduce variability

<u>Objective</u>: Use *Variability of Service Time* as a Guiding Principle to Reduce Application Latency

Fine-Grained Request Probing

- Timestamp the request as it traverses server
 - Append 64 bytes buffer to request
 - At stage boundaries, add timestamp at appropriate offset
- Use timestamps to compute per-stage duration k Layer

Fine-Grained Request Probing

Computing Variability of Service Time at Each Stage

- $Var(S) = E[S^2] (E[S])^2$
 - ► E[S] ≈ $(s_1 + s_2 + ... + s_n)/n$; E[S²] ≈ $(s_1^2 + s_2^2 + ... + s_n^2)/n$
 - n requests
 - s_i: duration for request i
 - Only need running sum of duration (S) and its square (S²)
 - Low overhead

Web service	
	Socket
	ТСР
	IP
	Data Link Layer
	Physical Layer (NIC)
_	

Computing Variability of Service Time at Each Stage

- Running sum will result in large sums, especially E[S²]
- Alternatively can use Welford's online algorithm
- Need to record requests over a window W
- For a new sample x_{w+1} :
- Delta in means: $(\sum_{i=2}^{W+1} x_i \sum_{i=1}^{W} x_i)/N$
- Delta in variance: $(x_{w_{+}1_{-}}x_{1})(xw \mu_{w_{+}1_{+}}x_{1} \mu_{w})$

WEB SERVER

Finding A Control Knob

- > Find service time (ST) variability of all the stages
- In the decreasing (highest first) order of ST variability, examine the functionality
- Reason what about the functionality and implementation makes it variable
- Control-Knob: Change the implementation to reduce variability, while retaining functionality, for example
 - > Introduce batching of constant size, to make service time predictable
 - > Reducing interference from background threads by changing thread scheduling

Outline

Part 2: Mitigating variability to reduce latency

- Application profiling: service time variability, stages of processing
- Control knobs: OS and application specific knobs to reduce variability
- Case studies: Memcached, Apache web server; alternative strategies
- Future work: multi-server, VMs, microservices
- Conclusion

Methodology

Experimental setup:

- Server and Client: Intel Xeon 2620, 64GB DRAM,1Gbps via ToR switch
- Linux kernel version 3.16.7

Methodology:

- Running sum of service time for each stage across all (10M) requests
- Averaged over 5 iterations

Applications:

- Memcached: In-memory, key-value store, event driven, multi-threaded
- Apache web server: Highly scalable, multi-process + multi-threaded

Memcached: High Throughput Configuration

- 5 worker threads on 5 cores
- 1 core used by LRU thread
- Bottleneck: socket-to-parse

Bottleneck Analysis

- Socket-to-parse: parsing the drained batch of requests from the socket, one request at a time (last request in batch has to wait a long time)
- Time taken in this stage is proportional to the size of the request batch
- Control knob: Nagle's algorithm at Client
 - Batch size determined by network conditions
 - \succ Variable n/w conditions \rightarrow batch size variability

Finding the Control Knob

- Knob: admission control threshold (max wait time before batch is sent)
 - > Threshold too small \rightarrow too many small packets
 - > Threshold too large \rightarrow large delays
 - Determined empirically
- Significantly reduces batch size and stage variability

Improvement in Application Latency

Constant load (300K req/s)

- Mean latency improves by 24-26%
- Tail latency improves by 34-40%

Facebook's VAR, APP, ETC traces

- Mean latency improvement: 14-20%
- Tail latency improvement: 26-39%

Lowering the variability does indeed help to reduce latency

Memcached: Low Throughput Configuration

- 2 worker threads on 2 cores
- 1 core used by LRU thread
- Bottleneck: tcp-to-socket

Bottleneck analysis:

Tcp-to-socket: end of TCP proc to app picking up request from socket

TCP enqueues App reads

- Possible causes: threademigration, background processes
- We find that variability decreases as # cores (and load) increases

Finding the Control Knob

- Memcached LRU maintenance thread causes interference and variability
- Control knob: Move LRU maintenance to worker thread

- Empirically derived
 - Optimal budget increases with request rate (as LRU work increases)

Improvement in Application Latency

Constant load (300K req/s)

- Mean latency improves by about 20-28%
- Tail latency improves by 4–32%

Facebook's VAR, APP, ETC traces

- Mean latency improvement: 22-31%
- Tail latency improvement: 7–42%

Application to Apache Web Server

- Parse-to-response: App processing
- Tcp-to-socket: Wakeup latency of app
 - Note: Variability increasing with req rate

Bottleneck analysis: Unpinned thread

- Scheduled/awoken at request arrival
- > Thread can be migrated, adds to variability, especially at high req rate

Control knob: Pin application threads, hopefully reduce thread migration variability

> Downside: Have to wait for pinned core, even if others are idle

Improvement in Application Latency

Constant load (37.5K req/s)

- Mean latency improvement: 15–50%
- Tail latency improvement: 19-52%

Facebook's VAR, APP, ETC traces

- Mean latency improvement: 27–49%
- Tail latency improvement: 36-62%

Key Idea: Focus on Variability

Using variability of service time for identifying bottleneck and control knob

Q1) What if we use mean service time (ST)?

- For Memcached low xput, mean ST suggests socket-to-parse
- But using optimal batching *hurts latency* by as much as 32%
- > Variability of ST reduces latency by 30% by targeting tcp-to-socket (LRU idea)

Q2) What if we pick the wrong control knob?

- Memcached high xput: batching helps by 25%
- > What if we use pinning?
- Pinning hurts latency by 12%

Limitations

- Request probing can add overhead
 - > As much as 5% in our case
- Finding control knobs is not obvious
 - > Knobs may not generalize to other applications
 - Some ideas can generalize, e.g., focus on thread scheduling for tcp-to-socket
- Control knobs require (empirical) tuning
- > Not difficult, but requires offline work

Outline

Part 2: Mitigating variability to reduce latency

- Application profiling: service time variability, stages of processing
- Control knobs: OS and application specific knobs to reduce variability
- Case studies: Memcached, Apache web server; alternative strategies
- Future work: multi-server, VMs, microservices
- Conclusion

Other Applications: Debugging Microservices

Microservices have 10s to 100s of services composing an application

Typical stress points: Network processing, Scheduling Delays

Profiling Microservices

Build upon existing tracing infrastructure such as Jaeger for stage level breakdown

Other Applications: Multi-tier VM deployments

- Cloud hosted web applications use multi-tier VM setups
- VM relies on the guest OS, hypervisor, and host OS, to get access to physical resources.
- Need to probe multiple abstractions guest OS, hypervisor, host OS.
- The timestamps collected in this case (hypervisor and guest OS) will be passed back to the host OS

Guest OS
Hypervisor
Host OS
Physical Resources

Outline

Part 2: Mitigating variability to reduce latency

- Application profiling: service time variability, stages of processing
- Control knobs: OS and application specific knobs to reduce variability
- Case studies: Memcached, Apache web server; alternative strategies
- Future work: multi-server, VMs, microservices

Conclusion

Conclusion

- Presented an approach, inspired by QT, to find/mitigate latency bottlenecks
 - Memcached
 - High-xput (bounded batching): Mean-latency: 24-26%, Tail latency: 34-40%
 - Low-xput (LRU amortization): Mean-latency: 20-28%, Tail latency: 4-32%
 - Apache Web server
 - (thread pinning): Mean-latency: 15-50%, Tail latency: 19-52%

Variability as a guiding principle for system design

Thank you!

Anshul Gandhi and Amoghavarsha Suresh

Backup Slides