
Leveraging Queueing Theory and OS

Profiling to Reduce Application Latency

Anshul Gandhi Amoghavarsha Suresh

Assistant Professor
Computer Science Dept.

Ph.D. Student
Computer Science Dept.

• Online (or web) applications are everywhere

• Such apps are interactive, responsive (sub-second latency)

• Latency is a critical metric

2

High-Level Motivation for this Tutorial

3

• Today’s online services consist of several components

• To optimize end-to-end latency, where should one start looking?

Applications are Complex

• Common approach: underutilize servers

• Other approaches: shorten the critical path

➢ Chronos (SOCC’12): User-level networking, bypass kernel

➢ UCR (ICPP’11): RDMA-capable Memcached

➢ Tales of the Tail (SOCC’14): Real-time scheduling

➢ Warehouse-scale computers (ISCA’15): Hardware specialization

• All these approaches ignore a key issue: variability

4

Goal: Achieving Low Latency

• Request processing times are highly variable

• Harder to obtain low tail latencies

• But, variability represents an opportunity

CDF of Memcached request latency

5

Significance of Variability

Our focus in this tutorial is on directly targeting

a reduction in variability to improve latency

6

dependency graph

critical path

longest

edge

requests

C
D

F
most

variable

Significance of Variability

Variability represents an opportunity for reducing latency

7

dependency graph

critical path

longest

edge

requests

C
D

F
most

variable

Goal of this Tutorial

Reduce end-to-end server latency by targeting per-stage variability

Application

Socket

TCP

IP

Data Link Layer

Physical Layer (NIC)

SERVER

8

dependency graph

critical path

longest

edge

most

variable

High-Level Outline of Tutorial

1. How variability impacts latency?

• Why our approach works

2. How to mitigate variability?

• How to apply our approach

9

Part 1: Queueing theory and practice

• Basics of queueing theory: arrivals, departures, queues

• Queueing models: M/M/1, M/M/k, M/G/1

• Useful lessons: latency vs. load, impact of variability, load balancing

• Shortcomings: limiting assumptions, practical applicability

• Using queueing theory to detect application bottlenecks

Part 2: Mitigating variability to reduce latency

• Application profiling: service time variability, stages of processing

• Control knobs: OS and application specific knobs to reduce variability

• Case studies: Memcached, Apache web server; alternative strategies

• Future work: multi-server, VMs, microservices

Outline of Tutorial

• Early 1900s, by Erlang

• To analyze telephone exchanges

• Today, queues are everywhere!

10

Queueing Theory Origins

11

Popular Applications of Queueing Theory

• Use queueing theory to analyze the impact of

variability on latency

• Model each component as a queueing system

➢ Example, packet processing at the NIC

➢ Example, an entire server in a multi-tier deployment

12

How Queueing Theory fits into this Tutorial

• Single-server, First-Come-First-Serve (FCFS)

• External arrivals, open-loop system

13

Queueing Theory Basics

queue with

(blue) requests
server processing

a request

incoming

(new) request

T

Q S

Request latency (T) = queueing time (Q) + service time (S)

• Model latency (T) as a function of two processes or random variables:

➢ Inter-arrival time, IAT, time between requests

➢1/E[IAT] = λ requests/sec (average arrival rate)

➢ Service time, ST, size of a request

➢1/E[ST] = μ requests/sec (average service rate)

• Can also model number of requests in system (N) or queue (NQ)

14

How Queueing Theory Works

queue with

(blue) requests
server processing

a request

➢ 1/E[IAT] = λ requests/sec (average arrival rate)

➢ 1/E[ST] = μ requests/sec (average service rate)

➢ Assume λ < μ always

➢ Why? What if λ > μ ??

15

Arrivals and Services

μλ

• 4 GHz server

• Single-threaded CPU-intensive job

requiring 1 Gigacycles to complete

• E[ST] = 1/4 seconds

• μ = 4 req/s

??

?

➢ 1/E[IAT] = λ requests/sec (average arrival rate)

➢ 1/E[ST] = μ requests/sec (average service rate)

➢ Average incoming work/sec

➢ Note, ρ < 1

16

System Load

μλ

• E[ST] = 1/4 seconds (μ = 4 req/s)

• λ = 2 req/s

• ρ = 2/4 = 0.5 (or, 50% load)

Load (ρ) = E[ST]/E[IAT] = λ/μ

??

➢ λ and μ are key parameters of queueing models

➢ But how to obtain these in practice? Not always readily available.

1. λ is average arrival rate: measurable at load balancer or load generator

17

In Practice: Arrivals and Services

μλ

➢ λ and μ are key parameters of queueing models

➢ But how to obtain these in practice? Not always readily available.

2. μ is average service rate

18

In Practice: Arrivals and Services

μλ

μ is same as throughput??

➢ Throughput is average rate at which requests are serviced

19

In Practice: What About Throughput?

μλ

• Avg. arrival rate λ req/s

• Avg. service rate μ req/s

• Assume no losses

• Peak throughput = μ req/s

• Throughput = λ req/s

??

??

• Avg. arrival rate λ req/s

• Avg. service rate 2μ req/s

• Assume no losses

• Peak throughput = 2μ req/s

• Throughput = λ req/s

??

??

2μ

➢ λ and μ are key parameters of queueing models

➢ But how to obtain these in practice? Not always readily available.

2. μ is average service rate

20

In Practice: Arrivals and Services

μλ

μ is same as peak throughput

λ < μ

• μ = 1/E[ST]

• ST: time to service request (no queueing)

• Measure E[ST] and set μ = 1/E[ST]

21

Part 1: Queueing theory and practice

• Basics of queueing theory: arrivals, departures, queues

• Queueing models: M/M/1, M/M/k, M/G/1

• Useful lessons: latency vs. load, impact of variability, load balancing

• Shortcomings: limiting assumptions, practical applicability

• Using queueing theory to detect application bottlenecks

Outline of Tutorial

• Model latency (T) as a function of two processes or random variables:

➢ Inter-arrival time, IAT, time between requests

➢Service time, ST, size of a request

• Queueing model: DIAT / DST / 1 model

22

Queueing Models

queue with

(blue) requests
server processing

a request

single server
distribution of ST

distribution of IAT

• Common distributions:

➢ D: Deterministic (zero var)

23

Significance of the IAT and ST Distribution

E[ST] = 1 ms; E[IAT] = Load/E[ST]

2 ms 2 ms 2 ms

1 ms 1 ms 1 ms 1 ms

• Common distributions:

➢ D: Deterministic (zero var)

➢ M: Exponential (medium var)

24

Significance of the IAT and ST Distribution

E[ST] = 1 ms; E[IAT] = Load/E[ST]M/D/1 model

• Common distributions:

➢ D: Deterministic (zero var)

➢ M: Exponential (medium var)

25

IAT and ST Distributions

1
()

x
f x

e

Mean = 2

• Common distributions:

➢ D: Deterministic (zero var)

➢ M: Exponential (medium var)

➢ H2: Hyper-exponential (tunable)

26

IAT and ST Distributions

1

2

2

()

()

 w.p. p

 w.p. (1-p)

Exp
H

Exp






= 


Mean = 2

• Common distributions:

➢ D: Deterministic (zero var)

➢ M: Exponential (medium var)

➢ H2: Hyper-exponential (tunable)

➢ Pareto (high var)

27

IAT and ST Distributions

1

1
()f x

x+

“Heavy” tail

Heavy tail distribution has a tail that is heavier than that of an exponential

Mean = 2

• Model latency (T) as a function of two processes or random variables:

➢ Inter-arrival time, IAT, time between requests

➢Service time, ST, size of a request

• Queueing model: DIAT / DST / 1 model

29

Queueing Models: Results

queue with

(blue) requests
server processing

a request

single server
distribution of ST

distribution of IAT

• Common distributions:

➢ D: Deterministic (zero var)

➢ M: Exponential (medium var)

➢ H2: Hyper-exponential (high var)

➢ Pareto (high var)

➢ G: General distribution

30

Queueing Models: Results

E[ST] = 1 ms; E[IAT] = Load/E[ST]

A. Suresh and A. Gandhi, Using Variability as a Guiding Principle to Reduce Latency in Web Applications

via OS Profiling, WWW 2019

• Latency rises non-linearly with load

• M/M/1: E[T] = 1/(μ - λ) = E[ST]/(1 - ρ)

• T95 = E[ST]*ln(20)/(1 - ρ)

• Tx = E[ST]*ln(1-.01x)/(1 - ρ)

31

Queueing Models: Results

E[ST] = 1 ms; E[IAT] = Load/E[ST]

Takeaway 1

Latency ~ 1 / (1 - ρ)

• For a given load, latency increases

with IAT and ST variability

• For a given load:

TM/H2/1 > TM/M/1 > TM/D/1 > TD/D/1

32

Queueing Models: Results

E[ST] = 1 ms; E[IAT] = Load/E[ST]

Takeaway 2

Latency increases with load

and IAT and ST variability

• In practice, latency ~ 1/(1 - ρ), and not latency ~ ρ

• However, in practice, latency ≠ E[ST]/(1 - ρ)

➢ IAT and ST not always exponential

➢ Network delays, resource contention

33

In Practice: Queueing Models

A. Gandhi et al., AutoScale, ACM Trans. Comp. Sys., 2012; S. Javadi et al., DIAL, ICAC 2017; S. Votke et

al., Modeling and Analysis of Performance under Interference in the Cloud, Mascots 2017

• A better approximation in practice:

34

In Practice: Queueing Models

() 31

2

1
1

T 
 

= +
− 

network delays

resource

contention

heavy-tail

distributions

Solve for α via

regression or

control theory

S. Javadi et al., DIAL, ICAC 2017; A. Gandhi et al., Providing Performance Guarantees for Cloud-deployed

Applications, IEEE Trans. Cloud Computing, 2018

Takeaway 3

35

In Practice: Queueing Models

() 31

2

1
1

T 
 

= +
− 

Queueing models

are not meant to be

used out-of-the-box

36

In Practice: IAT and ST distributions

• Common distributions:

➢ D: Deterministic (zero var)

➢ M: Exponential (medium var)

➢ H2: Hyper-exponential (tunable)

➢ Pareto (high var)

Which distribution does

my IAT and ST follow?

Distribution fitting to derive

the best fit for your data!

M. Wajahat et al., Distribution Fitting and Performance Modeling for Storage Traces, Mascots 2019 (Best Paper)

Takeaway 4

The H2 distribution can be tuned via its parameters

to provide an adequate fit for IAT and ST

H2/H2/1 model

• Today’s applications employ a cluster of servers to serve the workload

• Queueing model: DIAT / DST / k model

37

Multi-Server Queueing Models

queue with

(blue) requests
cluster of servers

processing requests

k servers
distribution of ST

distribution of IAT

Scheduling: idle

server picks request

from head-of-queue

• M/M/k, M/G/k, G/G/k

38

Multi-Server Queueing Models: Results

As yet unsolved!!
as k ↑

ρ = λ/kμ < 1

Takeaway 5

• Pr(all k servers busy) ~ ρk

• With more servers, we can

better handle load variations

• How to load balance among heterogeneous, processor sharing, servers?

➢ Proportional to their service rates??

➢ No!

39

In Practice: Multi-Server Queueing Models

queue with

(blue) requests

Scheduling: LB immediately

forwards request to a server

LB 3μ

2μ

μp1

p2

pk

40

In Practice: Multi-Server Queueing Models

LB 3μ

2μ

μp1

p2

pk

λ

Takeaway 6

()
* j ji j i j i

i

j j

p
     

 

 −  +  
=



S. Javadi et al., DIAL, ICAC 2017

A. Gandhi et al., HALO, Mascots 2015

• How to load balance among heterogeneous, processor sharing, servers?

➢ Send more-than-proportional load to faster servers

➢ Send less-than-proportional load to slower servers

41

Part 1: Queueing theory and practice

• Basics of queueing theory: arrivals, departures, queues

• Queueing models: M/M/1, M/M/k, M/G/1

• Useful lessons: latency vs. load, impact of variability, load balancing

• Shortcomings: limiting assumptions, practical applicability

• Using queueing theory to detect application bottlenecks

Outline of Tutorial

42

dependency graph

longest

edge

most

variable

Back to Variability

• Inter-arrival time, IAT, time between requests

• Service time, ST, size of a request

➢ D: Deterministic (zero var)

➢ M: Exponential (medium var)

➢ H2: Hyper-exponential (high var)

43

Service Time Variability

E[ST] = 1 ms; E[IAT] = Load/E[ST]

• Service time, ST, size of a request

as Var(ST) ↑

• Var(ST) is important

• But what about E[ST] ?

• T: Latency

• ST: Service time – size of a request

• IAT: Inter-arrival time

• ρ: load (work/sec) Latency heatmap as function of Var(ST), E[ST]

44

(2)

2 (1) 2(1)E[IAT]



 

 −
= +

  − −

Var(ST) E[ST]
E[T]

Impact of Var(ST) and E[ST] on Latency

M/G/1 model (P-K formula)

Takeaway 7

Reducing Var(ST), even at the expense of E[ST],

can significantly reduce latency

45

Part 1: Queueing theory and practice

• Basics of queueing theory: arrivals, departures, queues

• Queueing models: M/M/1, M/M/k, M/G/1

• Useful lessons: latency vs. load, impact of variability, load balancing

• Shortcomings: limiting assumptions, practical applicability

• Using queueing theory to detect application bottlenecks

Part 2: Mitigating variability to reduce latency

• Application profiling: service time variability, stages of processing

• Control knobs: OS and application specific knobs to reduce variability

• Case studies: Memcached, Apache web server; alternative strategies

• Future work: multi-server, VMs, microservices

Outline of Tutorial

Takeaway 1

Latency ~ 1 / (1 - ρ)

Takeaway 2

Latency increases with load

and IAT and ST variability

Takeaway 3

() 31

2

1
1

T 
 

= +
− 

Takeaway 4

The H2 distribution can be tuned

via its parameters to provide an

adequate fit for IAT and ST

Takeaway 5

• Pr(all k servers busy) ~ ρk

• With more servers, we can

better handle load variations

Takeaway 6

()
* j ji j i j i

i

j j

p
     

 

 −  +  
=



Takeaway 7

Reducing Var(ST), even at the expense of E[ST],

can significantly reduce latency

Step 1: Fine-grained probing to track request processing stages

Step 2: Compute variability at each stage to find bottlenecks

Step 3: Find appropriate control knobs to reduce variability

46

Solution Overview for Client-Server Web Systems

Objective: Use Variability of Service Time as a

Guiding Principle to Reduce Application Latency

47

Application

Socket

TCP

IP

Data Link Layer

Physical Layer (NIC)

Web service

Socket

TCP

IP

Data Link Layer

Physical Layer (NIC)

CLIENT WEB SERVER

Fine-Grained Request Probing

• Timestamp the request as it traverses server

➢ Append 64 bytes buffer to request

➢ At stage boundaries, add timestamp at appropriate offset

• Use timestamps to compute per-stage duration

49

PB0: Network stack processing

NIC driverT1

PB2: Batch of requests arrive

App begins processingT4

T2tcp_rcv_established() TCP enqueues to socket

PB1: Worker thread wakeup

App reads at socketT3do_sock_read()

App ends processing

PB3: App processing

T5sock_sendmsg()

Fine-Grained Request Probing

50

Web service

Socket

TCP

IP

Data Link Layer

Physical Layer (NIC)

WEB SERVER

Computing Variability of Service Time at Each Stage

• Var(S) = E[S2] – (E[S])2

➢ E[S] ≈ (s1 + s2 +…+ sn)/n; E[S2] ≈ (s1
2 + s2

2 +…+ sn
2)/n

▪ n requests

▪ si: duration for request i

➢ Only need running sum of duration (S) and its square (S2)

➢ Low overhead

PB0: Network

stack processing

51

Web service

Socket

TCP

IP

Data Link Layer

Physical Layer (NIC)

WEB SERVER

Computing Variability of Service Time at Each Stage

• Running sum will result in large sums, especially E[S2]

• Alternatively can use Welford’s online algorithm

• Need to record requests over a window W

• For a new sample xw+1 :

• Delta in means:

• Delta in variance: (𝑥𝑤 + 1 −
𝑥1)(𝑥𝑤 − μ𝑤 + 1 +

𝑥1− μ𝑤)

PB0: Network

stack processing

(σ𝑖=2
𝑊+1 𝑥𝑖 − σ𝑖=1

𝑊 𝑥𝑖)/𝑁

➢ Find service time (ST) variability of all the stages

➢ In the decreasing (highest first) order of ST variability, examine the

functionality

➢ Reason what about the functionality and implementation makes it variable

➢ Control-Knob: Change the implementation to reduce variability, while

retaining functionality, for example

➢ Introduce batching of constant size, to make service time predictable

➢ Reducing interference from background threads by changing thread scheduling

52

Finding A Control Knob

Outline

Part 2: Mitigating variability to reduce latency

• Application profiling: service time variability, stages of

processing

• Control knobs: OS and application specific knobs to reduce

variability

• Case studies: Memcached, Apache web server; alternative

strategies

• Future work: multi-server, VMs, microservices

• Conclusion 53

Experimental setup:

• Server and Client: Intel Xeon 2620, 64GB DRAM,1Gbps via ToR switch

• Linux kernel version 3.16.7

Methodology:

• Running sum of service time for each stage across all (10M) requests

• Averaged over 5 iterations

Applications:

• Memcached: In-memory, key-value store, event driven, multi-threaded

• Apache web server: Highly scalable, multi-process + multi-threaded
54

Methodology

55

Memcached: High Throughput Configuration

NIC driver

TCP enqueues

to socket

App reads

at socket

App begins

processing
App ends

processing

driver-to-tcp tcp-to-socket socket-to-parse parse-to-response

• 5 worker threads on 5 cores

• 1 core used by LRU thread

• Bottleneck: socket-to-parse

56

Bottleneck Analysis

• Socket-to-parse: parsing the drained batch of requests from the socket,

one request at a time (last request in batch has to wait a long time)

• Time taken in this stage is proportional to the size of the request batch

• Control knob: Nagle’s algorithm at Client

➢ Batch size determined by network conditions

➢ Variable n/w conditions → batch size variability

• Knob: admission control threshold (max wait time before batch is sent)

➢ Threshold too small → too many small packets

➢ Threshold too large → large delays

➢ Determined empirically

• Significantly reduces batch size and stage variability

57

Finding the Control Knob

58

default, uniform
modified, uniform
default, bursty
modified, bursty

Improvement in Application Latency

Constant load (300K req/s)

• Mean latency improves by 24−26%

• Tail latency improves by 34−40%

Facebook’s VAR, APP, ETC traces

• Mean latency improvement: 14−20%

• Tail latency improvement: 26−39%

Lowering the variability does indeed help to reduce latency

59

Memcached: Low Throughput Configuration

• 2 worker threads on 2 cores

• 1 core used by LRU thread

• Bottleneck: tcp-to-socket

Bottleneck analysis:

• Tcp-to-socket: end of TCP proc to app picking up request from socket

• Possible causes: thread migration, background processes

• We find that variability decreases as # cores (and load) increases

TCP enqueues

to socket

App reads

at socket

tcp-to-socket

• Memcached LRU maintenance thread causes interference and variability

• Control knob: Move LRU maintenance to worker thread

• LRU maintenance should:

➢ Emulate default LRU work

➢ Avoid stepping on future requests

• LRU maintenance budget: amount of LRU work during sleep

➢ Empirically derived

➢ Optimal budget increases with request rate (as LRU work increases)
60

Finding the Control Knob

Batch of
requests

Sleep Batch of
requests

worker threadLRU

LRU thread

61

Improvement in Application Latency

Constant load (300K req/s)

• Mean latency improves by about 20-28%

• Tail latency improves by 4−32%

Facebook’s VAR, APP, ETC traces

• Mean latency improvement: 22−31%

• Tail latency improvement: 7−42%
default, uniform

amortized, uniform

default, bursty

amortized, bursty

• Parse-to-response: App processing

• Tcp-to-socket: Wakeup latency of app

➢ Note: Variability increasing with req rate

Bottleneck analysis: Unpinned thread

➢ Scheduled/awoken at request arrival

➢ Thread can be migrated, adds to variability, especially at high req rate

Control knob: Pin application threads, hopefully reduce thread migration variability

➢ Downside: Have to wait for pinned core, even if others are idle
62

Application to Apache Web Server

63

Improvement in Application Latency

Constant load (37.5K req/s)

• Mean latency improvement: 15−50%

• Tail latency improvement: 19−52%

Facebook’s VAR, APP, ETC traces

• Mean latency improvement: 27−49%

• Tail latency improvement: 36−62%

64

Key Idea: Focus on Variability

Using variability of service time for identifying bottleneck and control knob

Q1) What if we use mean service time (ST)?

➢ For Memcached low xput, mean ST suggests socket-to-parse

➢ But using optimal batching hurts latency by as much as 32%

➢ Variability of ST reduces latency by 30% by targeting tcp-to-socket (LRU idea)

Q2) What if we pick the wrong control knob?

➢ Memcached high xput: batching helps by 25%

➢ What if we use pinning?

➢ Pinning hurts latency by 12%

65

Limitations

• Request probing can add overhead

➢ As much as 5% in our case

• Finding control knobs is not obvious

➢ Knobs may not generalize to other applications

➢ Some ideas can generalize, e.g., focus on thread scheduling for tcp-to-socket

• Control knobs require (empirical) tuning

➢ Not difficult, but requires offline work

Outline

Part 2: Mitigating variability to reduce latency

• Application profiling: service time variability, stages of

processing

• Control knobs: OS and application specific knobs to reduce

variability

• Case studies: Memcached, Apache web server; alternative

strategies

• Future work: multi-server, VMs, microservices

• Conclusion 66

67
Typical stress points: Network processing, Scheduling Delays

Microservices have 10s to 100s of services composing an application

Other Applications: Debugging Microservices

68

Build upon existing tracing infrastructure such as Jaeger for stage level breakdown

Profiling Microservices

• Cloud hosted web applications use multi-tier VM setups

• VM relies on the guest OS, hypervisor, and host OS, to

get access to physical resources.

69

• Need to probe multiple abstractions – guest OS,

hypervisor, host OS.

• The timestamps collected in this case (hypervisor and

guest OS) will be passed back to the host OS

Host OS

Hypervisor

Guest OS

Physical Resources

Other Applications: Multi-tier VM deployments

Outline

Part 2: Mitigating variability to reduce latency

• Application profiling: service time variability, stages of

processing

• Control knobs: OS and application specific knobs to reduce

variability

• Case studies: Memcached, Apache web server; alternative

strategies

• Future work: multi-server, VMs, microservices

• Conclusion 70

71

Conclusion

• Presented an approach, inspired by QT, to find/mitigate latency bottlenecks

➢ Memcached

▪ High-xput (bounded batching): Mean-latency: 24-26%, Tail latency: 34-40%

▪ Low-xput (LRU amortization): Mean-latency: 20-28%, Tail latency: 4-32%

➢ Apache Web server

▪ (thread pinning): Mean-latency: 15-50%, Tail latency: 19-52%

Variability as a guiding principle for system design

72

Thank you!

Anshul Gandhi and Amoghavarsha Suresh

73

Backup Slides

